Date: \qquad

Squares \& Square Roots

A. SQUARING A NUMBER:

- to square a number means to multiply that number by itself;
- it is a very common power - the exponent is always ' 2 '
- e.g. $3^{2}=\underline{3 \times 3}=\underline{9}$
$7^{2}=\underline{7 \times 7}=\underline{49}$

$$
15^{2}=\underline{15 \times 15}=\underline{225}
$$

- you should memorize these:
$1^{2}=\underline{1}$
$2^{2}=\underline{4}$
$3^{2}=\underline{9}$
$4^{2}=\underline{16}$
$5^{2}=\underline{25}$
$6^{2}=\underline{36}$
$7^{2}=\underline{49}$
$8^{2}=\underline{64}$
$9^{2}=\underline{81}$
$10^{2}=\underline{100}$
$11^{2}=\underline{121}$
$12^{2}=\underline{144}$

B. FINDING THE SQUARE ROOT OF A NUMBER:

1. square root - a number that, when multiplied by itself, equals the original number
eg. the square root of 64 is $\underline{8}$ since $8 \times 8=64$
the square root of 8.41 is $\underline{2.9}$ since $2.9 \times 2.9=8.41$
we use this symbol when we want to find the square root

2. perfect square - a number that has a natural number as its square root

- natural numbers are the counting numbers $(1,2,3,4,5, \ldots)$ eg. 64 is a perfect square because its square root is $\underline{8}$ a natural number 8.41 is not a perfect square because its square root is $\underline{2.9}$, and this is not a natural number
I. Find the following square roots. (You must memorize these perfect squares!)
a. $\sqrt{ } 4=$
b. $\sqrt{ } 9=$ \qquad c. $\sqrt{ } 16=$ \qquad d. $\sqrt{25}=$ \qquad
e. $\sqrt{36}=$ \qquad
f. $\sqrt{49}=$ \qquad
g. $\sqrt{ } 64=$ \qquad
h. $\sqrt{ } 81=$ \qquad
i. $\sqrt{ } 100=$ \qquad
j. $\sqrt{ } 121=$ \qquad
k. $\sqrt{ } 144=$ \qquad

II. Find the following square roots.

a. $\sqrt{0.04}=$
b. $\sqrt{ } 0.16=$ \qquad c. $\sqrt{ } 1.21=$
d. $\sqrt{ } 1.44=$ \qquad
e. $\sqrt{ } 225=$ \qquad
f. $\sqrt{ } 196=$ \qquad

C. ESTIMATING SQUARE ROOTS OF NUMBERS THAT ARE NOT PERFECT SQUARES:

$\sqrt{ } 12$ - this number is not a perfect square

- we can estimate the answer
- we look for the two closest perfect squares to 12 ----> 9 and 16

12 is almost in the middle between 16 and 9
$\sqrt{ } 9=3 \quad$ it is closer to 9 , so $\sqrt{ } 12$ should be closer to 3 than 4

this symbol means 'approximately equal'
I. Estimate the square roots of these numbers. Use your calculator to check afterwards.
a. $\sqrt{ } 15$
b. $\sqrt{37}$
c. $\sqrt{50}$
d. $\sqrt{93}$
II. Find a number that has a square root between each of the following numbers. The first one is done for you.
a. 6 and 7
b. 5 and 6
c. 10 and 11

6 is the square root of 36
7 is the square root of 49
So, a square root that is
between 6 and 7 must be
of numbers between 36
and 49.
I can choose any number
between those two
numbers - I choose 39.
Remember $\sqrt{39}$ will fall
between 6 and 7.

