Squares & Square Roots

A. SQUARING A NUMBER:

- to square a number means to multiply that number by itself;

- it is a very common power - the exponent is always '2'

- e.g. $3^2 = \underline{3 \times 3} = \underline{9}$	$7^2 = 7$	x 7 = 49	$15^2 = \underline{15 \times 15} = \underline{225}$				
- you should memorize these:							
$1^2 = \underline{1}$	$2^2 = 4$	$3^2 = 9$	$4^2 = 16$				
$5^2 = 25$	$6^2 = 36$	$7^2 = 49$	$8^2 = 64$				

$9^2 = \underline{81} \qquad 10^2 = \underline{100} \qquad 11^2 = \underline{121} \qquad 12^2 = \underline{144}$

B. FINDING THE SQUARE ROOT OF A NUMBER:

1. square root - a number that, when multiplied by itself, equals the original number

eg. the square root of 64 is $\underline{8}$ since $8 \times 8 = 64$

the square root of 8.41 is 2.9 since $2.9 \times 2.9 = 8.41$ we use this symbol when we want to find the square root

2. perfect square - a number that has a natural number as its square root

- natural numbers are the <u>counting</u> numbers (1, 2, 3, 4, 5, ...)

eg. 64 is a perfect square because its square root is 8, a natural number

8.41 is <u>not</u> a perfect square because its square root is <u>2.9</u>, and this is not a natural number

I. Find the following square roots. (You must memorize these perfect squares!)

a. √4 =	b. √9 =	c. √16 =	d. √25 =
e. √36 =	f. √49 =	g. √64 =	h. √81 =
i. √100 =	j. √121 =	k. √144 =	

II. Find the following square roots.

a.
$$\sqrt{0.04} =$$

b. $\sqrt{0.16} =$ _____
c. $\sqrt{1.21} =$ _____

d. $\sqrt{1.44} =$ _____
e. $\sqrt{225} =$ _____
f. $\sqrt{196} =$ _____

C. ESTIMATING SQUARE ROOTS OF NUMBERS THAT ARE NOT PERFECT SQUARES:

I. Estimate the square roots of these numbers. Use your calculator to check afterwards.

II. Find a number that has a square root between each of the following numbers. The first one is done for you.

a. 6 and 7	b. 5 and 6	c. 10 and 11
6 is the square root of 36		
7 is the square root of 49		
So, a square root that is between 6 and 7 must be of numbers between 36 and 49. I can choose any number between those two numbers - I choose 39.		
Remember √39 will fall between 6 and 7.		