Date: \qquad

Squares \& Square Roots

A. DEFINITIONS:

1. square root - a number that, when multiplied by \qquad , equals another number eg. the square root of 64 is \qquad and \qquad since $8 \times 8=64$ and $(-8) \times(-8)=64$
the square root of 8.41 is \qquad and \qquad since $2.9 \times 2.9=8.41$ and $(-2.9) \times(-2.9)=8.41$
2. principal square root - it is the \qquad square root - we use this symbol

eg. the principal square root of 64 is 8 since $8 \times 8=$ \qquad the principal square root of 8.41 is 2.9 since $2.9 \times 2.9=$ \qquad
3. perfect square - a number that has a \qquad number as its principal square root

- natural numbers are the \qquad numbers $(1,2,3,4,5, \ldots)$
eg. 49 is a perfect square because its principal square root is $\boldsymbol{\sim}$, a natural number 12.25 is \qquad a perfect square because its principal square root is \qquad and this is not a natural number
I. Find the following square roots. (You must memorize these perfect squares!)
a. $\sqrt{ } 4=$
b. $\sqrt{ } 9=$ \qquad c. $\sqrt{16}=$ \qquad
d. $\sqrt{25}=$ \qquad
e. $\sqrt{36}=$
f. $\sqrt{49}=$
g. $\sqrt{ } 64=$
h. $\sqrt{ } 81=$
i. $\sqrt{ } 100=$ \qquad j. $\sqrt{ } 121=$
k. $\sqrt{ } 144=$ \qquad

II. Find the following square roots.

a. $\sqrt{0.04}=$ \qquad
b. $\sqrt{0.16}=$ \qquad
c. $\sqrt{ } 1.21=$ \qquad
d. $\sqrt{ } 1.44=$ \qquad
e. $\sqrt{225}=$ \qquad
f. $\sqrt{ } 196=$ \qquad

B. ESTIMATING SQUARE ROOTS OF NUMBERS THAT ARE NOT PERFECT SQUARES

$\sqrt{12}$ - this number is \qquad a perfect square

- we can \qquad the answer
- we look for the two \qquad perfect squares to 12 ----> 9 and 16
$\left.\begin{array}{l}\sqrt{ } 16=4 \\ \sqrt{12} \\ \sqrt{9}=3\end{array}\right\}$ 12 is almost in the middle between 16 and 9 it is closer to 9 , so $\sqrt{12}$ should be closer to 3 than 4
 this symbol means 'approximately equal'
I. Estimate the square roots of these numbers. Use your calculator to check afterwards.
a. $\sqrt{ } 15$
b. $\sqrt{37}$
c. $\sqrt{50}$
d. $\sqrt{93}$
II. Find a number that has a square root between each of the following numbers. The first one is done for you.
a. 6 and 7
b. 5 and 6
c. 10 and 11

6 is the square root of 36
7 is the square root of 49
So, a square root that is between 6 and 7 must be of numbers between 36 and 49.
I can choose any number between those two numbers - I choose 39.

Remember $\sqrt{ } 39$ will fall between 6 and 7 .

